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e-e scattering in the presence of an external field 

J Bergout, S Varr6-t and M V FedorovS 
t Central Research Institute for Physics, H-1525 Budapest, POB 49, Hungary 
f P  N Lebedev Physical Institute of the Academy of Sciences of the USSR, Moscow, 
Leninsky prospect 53, USSR 

Received 30 October 1980 

Abstract. A non-relativistic treatment is given of electron-electron scattering in the 
presence of a laser field. The field is accounted for by the external field approximation and is 
represented by a circularly polarised monochromatic plane-wave field. A simple analytic 
expression is derived for the transition amplitude, which is shown to exhibit internal 
resonances as well as intensity-dependent shifts. The former is the non-relativistic limit of 
the resonant M~l l e r  scattering predicted previously by Oleinik. The latter, however, 
appears in a higher order of u / c  and is consequently negligible for very slow electrons. The 
differential cross section of the scattering is also given where the effect of the spin and 
symmetry is taken into account explicitly. The width of resonances is introduced 
phenomenologically but its connection with previous methods is established. Consideration 
is also given to the experimental conditions under which the effects may become observable. 

1. Introduction 

In connection with the rapid development of high-power lasers, in the last two decades 
considerable theoretical effort has been devoted to the description of fundamental EM 
processes in the presence of an intense field. Of particular interest are the electromag- 
netic processes of.free charged particles in such an environment. The theory developed 
so far (e.g. Mitter 1975, Karapetyan and Fedorov 1978) predicts two different types of 
corrections whose physical origin is also entirely different. Namely, intensity-depen- 
dent resonances and intensity-dependent shifts are the main phenomena occurring in 
external field problems. The occurrence of resonances is connected with induced 
processes at integer multiples of the frequency of the external field, whereas the 
occurrence of intensity-dependent (energy and momentum) shifts is a classical effect 
connected with the average kinetic energy and momentum of a classical particle 
oscillating in an external field. Well known examples of these phenomena are the 
nonlinear bremsstrahlung (Bunkin and Fedorov 1965) and nonlinear Compton scat- 
tering (Brown and Kibble 1964) in the presence of an intense external field. Especially 
interesting and much less commonly investigated are, in this context, the resonances 
and shifts predicted for Mpller scattering. The problem was first investigated by Oleinik 
(1967a, b). His results, however, were not given in a form suitable for direct 
comparison with experiments. Very recently, the problem was reinvestigated using a 
different calculational technique developed especially to treat intense field problems 
(BOs et a1 1979a, b). The formalism was still rather complicated and allowed the 
calculations for non-relativistic energies only. In view of this, we think that the present 
status of the theory requires a consistent, non-relativistic treatment of this problem. 

0305-4470/81/092305 + 11$01.50 @ 1981 The Institute of Physics 2305 
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The calculations are based on the formalism where the laser field is taken into 
account exactly and all the other interactions are treated by perturbation theory 
(Bergou 1980). The laser field is represented as an external (classical) plane-wave field, 
In order to simplify the calculations, we introduce a few assumptions which are 
essentially very similar to the assumptions of Bos et a1 (1979a), namely: 

(1) the external field is circularly polarised; 
(2) consideration is given to non-relativistic unpolarised electrons; 
(3) the e-e interaction takes place via the static Coulomb potential; 
(4) there is no transverse-photon exchange; 
( 5 )  interaction with the spin momentum is neglected. 
The last four assumptions indicate that we use a consistent non-relativistic descrip- 

tion from the very beginning. As a result, we obtain a simple analytical expression for 
the transition amplitude in § 2. The kinematics of the process can easily be deduced 
from the delta-function parts of the transition amplitude. In § 3 we transform the 
transition amplitude to a form where the internal resonances appear explicitly and we 
then derive the cross section of the scattering. We also discuss how the inclusion of the 
spin and symmetry modifies the preceding results. In the last part of the paper (§ 4) we 
briefly summarise the main results, give a physical interpretation to the internal 
resonances and discuss their connection with experimental possibilities of observation. 

2. The transition amplitude 

In the following we shall investigate non-relativistic electron-electron scattering in the 
presence of an external field. For an intense (laser) field the one-mode, external field 
approximation is reasonably good provided that the following two requirements are 
satisfied (Bergou and Varr6 1981): 

(i) the number of photons in the mode is large; 
(ii) the change of the photon number (depletion) in a given process is much less than 

the initial number of photons. For a non-relativistic approximation this change should 
actually be less than the ratio of electron rest energy to photon energy (2 mc2/hw)  
which, in the case of optical frequencies, is still a large number (105-106). 

We start from the Schrodinger equation of the problem: 

iha+/at = H+ (2.1) 
where + is the two-electron wavefunction and the Hamiltonian H can be written in the 
form 

where 
H=Ho+ V(r)  (2.2) 

and 
V ( r )  = e 2  e-"'/r, r = Ixl - x2j. (2.4) 

Ho corresponds to the free electrons interacting with the external field. The external 
field itself is represented by the A ( v )  vector potential 

(2.5) A(v1.2) = a(e1 cos ~ 1 , 2 + e z  sin v1,2), ~ 1 , 2  = Ut - kx1,2, 
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which describes a circularly polarised plane wave. The electron-electron interaction is 
represented by the static Coulomb potential (2.4). The shielding factor (Y is introduced 
here merely to simplify the following calculations. Its physical significance will be 
discussed in 0 4. 

First, it should be noted that in dipole approximation ( k  = 0), the Schrodinger 
equation (2.1) can be decoupled in centre-of-mass and relative coordinates 

$(xi, X2, t )  = Qi(R, f)Q2(r, t ) ,  R =; (x1 +xz), r=xl -x2 ,  (2.6) 
to yield 

(2.7) 

Here 3 and 8 are the respective operators of total and relative momenta, M = 2 m  is the 
total mass, m, = m / 2  is the reduced mass. We can easily recognise that equation (2.7) 
corresponds to the motion of a free particle (with total charge 2e and mass 2 m )  in an 
external field, whereas equation (2.8) is the Schrodinger equation of a particle moving 
in a background potential field V(r).  Since now the scattering problem is entirely 
separated from the external field problem, we immediately see that the external field 
affects the scattering only if we go beyond dipole approximation (Brehme 1971, Bergou 
1976). 

Let us now return to the full Hamiltonian (2.2) which is beyond dipole approxima- 
tion. According to the spirit of intense field calculations, we shall treat V(r)  as a 
perturbation and use the solution of the HO part as a basis set for perturbation theory. 
Since Ho is the sum of two one-electron Hamiltonians, the unperturbed solution can be 
taken in the form of the product of two one-electron wavefunctions: 

(2.9) +(O)(Xl,  x2, t )  = $(O)(Xl, t)+‘0’(x2, t ) .  

The exact solution for +(O)(X, t)-which is given in terms of Mathieu functions and is 
therefore rather complicated-was found recently (Bergou and Varr6 1980). 
However, for all practical purposes, the following approximative solution is satisfactory 
(Bergou and Varr6 1980, Ehlotzky 1978): 

4“) = $p(x ,  t )  = ( 2 ~ h ) - ~ ”  exp [(i/h)(px -Et)],  

(2.10) 

where E = p 2 / 2 m  and w ’  = w ( 1 -  k p / m w )  is the Doppler-shifted frequency. 
The required validity condition of the above solution is the following. One may 

expand both (2.10) and the exact solution into Fourier series of einv. The coefficients of 
this Fourier series satisfy a complicated recurrence relation in the case of the exact 
solution, which can be shown to reduce to the simpler recurrence relation for the 
coefficients of the Fourier series of (2.10) if 

n h w / 2 m c 2 f ( a )  K 1, 
2 2 112 where f ( a )  = [( 1 - kp/mw)2 - (ea/mc ) ] is a slowly varying function of amplitude a. 

For a large range of the U-values f ( a )  - 1, and the validity condition is well fulfilled in 
optical interactions. 
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Performing the integration in (2.10), we obtain 

$ p ( ~ ,  t )  = (2.rrh)-3/2 exp [(i/h)(p'x - -Et)]  exp[i(ea/mchw)(elp'sin v - e g '  cos v)] 

where 
(2.11) 

(2.11a) 

We see that p' and B depend nonlinearly on the original momentum p and contain an 
intensity-dependent shift. p '  reduces to p in the case of very slow electrons. 

With the help of first-order perturbation theory, we obtain for the transition 
amplitude due to V(r) the expression 

Tfi= -i jm d t l  d3x1 d3x2 +?* (XI, XZ, t)V(r)$?)(xI, x2, t )  (2.12) 
h -m 

where 

do) = +Pl i  (XI, t )+PZi  (X2, t ) ,  

$i"' = $Plf(X1, t )  $PZf(X2, t )  ( 2 . 1 2 ~ )  

Using expression (2.1 1) for + p ( ~ ,  t )  in (2.12), we have the following explicit form of 
are initial and final wavefunctions, respectively. 

Tfi : 

X exp[iz (el Ap; sin V I  - e2Ap; cos v1 + elApk sin v2 - e2Ap; cos v2)]  
(2.13) 

where 

( 2 . 1 3 ~ )  
ea 

mchw' 
z=-  A# = bi - p ' f ,  Ap'=pl - p i ,  AB=Bi-Ef. 

If we now introduce centre-of-mass and relative coordinates, 

R = 4(X, +X2), r=x1-x2 ,  

and centre-of-mass and relative momenta, 

P=p1+p2,  P = 2.m - P 2 ) ,  

then Tfi takes the form 

Tfi=--- 6 Im d t l  d3R d3r V(r) exp{(i/h)[A~R+Apr-(A&~+A&)t]}. 
h (2Th) -m 

x exp {i[ - z l  sin t kr cos (ut- kR -9) +z2 cos 1 kr sin (ut- kR -@)I} 
(2.14) 

where 

elAP' = A P l  cos @, 

elAp' = ApY cos Q, 

2zApL = t i ,  ZAP: = z2 ,  

e2AP' = AP: sin a, 
e2Ap' = Ap: sin Q, ( 2 . 1 4 ~ )  
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after having made use of the trigonometric relations 

cos 
sin [ wt - kR f ikr} = '""I sin wt - kR] cosikr f cos sin( wt - kR} sinikr. 

Using the expansions 

eiz sin 0 = c J l ( z )  eile, ,is cos 0 - - C imJm(z) e"'. 
I m 

in (2.14), the time and R integrations can easily be carried out, yielding 

2309 

(2.15) 

where n = 1 + m. 
In the extreme non-relativistic case (scattering of very slow electrons) v/c << 1 and 

P = P' = P. Since z2 is proportional to the transverse component of AP '  = P! -PI, 
according to the conservation of the transverse components of the centre-of-mass 
momentum expressed by the delta function, we have 22 = 0 and JIt-dO) = 6,~ .  
Consequently, in this case Tfi can be represented as a single sum over n-photon emitted 
and absorbed parts, 

Tfi = Tji"' 
It 

where 

(2.16) 

(2.17) 

and 

tji") = ( 2 ~ h ) - ~  exp [-in (cp + $7r)] d3r V(r)JIt(zl sin d kr) exp -Apr . (2.18) I (d ) 
From here we can deduce the following conservation laws. 
(1) Transverse components of P are conserved. 
(2) The longitudinal component of P is shifted by an amount which depends on the 

momentum itself and is proportional to the light intensity. Furthermore, in the process 
of scattering it may acquire an integer number of the photon momentum hk. 

(3) The energy is also shifted by an amount depending on the momentum and being 
proportional to the light intensity. Furthermore, during scattering it may change by an 
integer number of the photon energy hw. 
The momentum shift SP is connected with the energy shift SE by the relation 
(6PI = ISEl/c and is therefore small even at high intensities. This justifies our process of 
neglecting the difference between # and P' but keeping when we made the transition 
from (2.15) to (2.17)-(2.18). 

The energy conservation law can be brought to a somewhat different form where the 
kinematics of the process is more apparent. The initial and final energies can be 
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expressed with the help of the centre-of-mass and relative momenta as follows (to first 
order in v / c ) :  

P:f p:f e2a2  e 2 a 2  kPi,f 
4m m 2mc 2mc mu 

Ei,~=Eii,f+EZi,f=-+-+2---2++-, 

Conservation of energy requires now 

(2.19) 

The uniform shift e 2 a 2 / 2 m c 2  cancels from the difference, and only the non-uniform 
part of the shift ( e 2 a 2 / 2 m c 2 )  kPi,f/mw gives a non-vanishing contribution. We can now 
make use of the conservation law of the centre-of-mass momentum P f =  Pi-nhk in 
(2 .19) ,  yielding 

(2.20) 

where VB = c k P i / m w  is the longitudinal (parallel to k )  component of the initial 
centre-of-mass velocity. 

In other words, the system takes on momentum as a whole (momentum change 
appears in the centre-of-mass motion). The coresponding Doppler shift and recoil 
together with an additional intensity-dependent energy shift appear in the relative 
motion. Equation (2 .17)  indicates that absorption and emission of real photons are also 
connected with the relative motion (for the process under consideration this means the 
internal degrees of freedom). To close this section, let us mention that in dipole 
approximation kr = 0, J,(O) = and equation (2.18) gives the usual fieldless scatter- 
ing amplitude as expected from equations (2 .7 )  and (2 .8) .  

3. Scattering cross section 

3.1. Inclusion of spin and symmetry 

Since the electrons are fermions, the two-electron wavefunction must be antisymmetric 
under the exchange of the two particles. Accordingly, we have to modify the theory 
developed in the preceding section in order to include this symmetry property in the 
treatment. First, we note that the Hamiltonian (2 .2)  does not affect the spin variables, 
and hence the total wavefunction is a product of the spin-dependent and the coor- 
dinate-dependent terms. The wavefunction describing the spin state of the two particles 
may be either symmetric (triplet state) or antisymmetric (singlet state) on the exchange 
of the particles. The corresponding orbital part is either antisymmetric (triplet state) or 
symmetric (singlet state). The orbital part of the transition amplitude Tfi will then be 
either antisymmetric (Tf,J or symmetric (Tfi,J. Since the effect of the exchange 0: the 
particles is equivalent to changing the sign of the relative momentum in the final state, 
and therefore does not affect the centre-of-mass part of the transition amplitude, we 
have for the symmetric case 

(3 .1)  



e-e scattering in the presence of an external field 2311 

where 

t:: = ( 2 ~ h ) - ~  [ d3r V(r){exp [(i/h)p'-'r]J,(z'-)sin 1 kr) exp [ - i n ( q ~ ( - ) + h ) ]  

+e~p[(i/h)p'~)r]J,(z'~'sin ikr)  exp[ -in(p(+)+kr)]} (3.2) 

and 

Pi * Pf, z(*)  = (ea/mcho)lpiL*ppfll, (3.3) p ( * )  = 

p'*) = tan-' (e2p(*)/elp(*)), 

$2 = tP ) ( e )+  tji")(r - e)  

Equation (3.2) can be written in the form 

(3.4) 

where t t ' ( 8 )  is the amplitude of transition due to the V(r)Jn(zl sin kr)  ePiq effective 
potential as given by equation (2.18) and 8 is the scattering angle (the angle between pf 
and pi). 

Similarly, for the antisymmetric case we have 

where now 

tt:  = tp(8)- tP)(r--O),  (3.6) 

Quite generally, there are three symmetric and one antisymmetric spin states for the 
two-electron system. For unpolarised electrons each state is equally probable. There- 
fore, in the cross section the weight of the antisymmetric combination (3.6) is three 
times larger than the weight of the symmetric combination (3.2), that is 

(3.7) 

The cross section dv/dfl  is a sum of incoherent nth-order cross sections and (3.7) holds 
for each of them separately. In the following we shall confine ourselves to the study of 
the (unsymmetrised) $'(e) scattering amplitude (2.18), since symmetrisation is essen- 
tially equivalent with the inclusion of tji"'(r - 8 )  in the treatment, and therefore effects 
connected with symmetry can be obtained by changing 8 to r - 8. 

3.2. Internal resonances 

To perform a numerical calculation for direct comparison with experiments, we can 
most conveniently use equation (2.18). In order to obtain a better insight into the 
dynamics of the physical processes involved, and to obtain a qualitative understanding 
of them, we transform the transition amplitude to a form where the internal resonances 
are manifest. We start from equation (2.18). Let us first introduce the Fourier 
representation of V(r) as 

V(r) = [ V(q) e-iqr d3q, V(q) = 4 ~ e ~ / ( q ~ + a ' ) ( 2 r ) ~ .  (3.8) 
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Then we use the integral representation for the Bessel function J n ( x )  (Abramowitz and 
Stegun 1964): 

1 "  
2T -" J, ( x )  = - exp( - in6 + ixsin6) do. 

In our case z1 sin 1 kr = x. Inserting this expression for x in the exponential and 
expanding exp (izl sin 6 sin 3 kr) in Fourier series of exp(imkr/2), we obtain for tg' 
from (2.18) 

$) = ( 2 ~ A ) - ~ e x p [ - i n ( c p + 2 ~ ) ] C  d6e-'"'Jm(zlsin 6) 
" 

m 5-w 

+ imkk - (3.9) 

Integration over r yields the Oirac delta function S(Ap - Aq +$mhk) and the integra- 
tion over q yields then V(q = kmk + Aplh). The only remaining integral (integration 
over 6) yields (Gradshtein and Ryahik 1971) 

We can summarise the results as follows. The transition amplitude T, can be represen- 
ted by a sum of n-photon emitted ( n  > 0) and absorbed ( n  < 0) parts T g )  

(2.16) 
n 

where 

Tfi"' ( - - - 2.rriS(Pf -Pi + ntik)S(& -Bi + n Aw)tg ' .  (2.17) 

is given either by equation (2.18)-which is more convenient for practical Here 
numerical calculations-or by 

(3.10) 
( m + n = e v e n )  

The scattering amplitude given in this form explicitly exhibits a resonance structure. 
Apart from the Coulomb resonance (Ap = 0), additional new resonances may occur 

if the scattering geometry is properly chosen. From (3.10) we might expect that the 
resonances occur whenever 2Ap + mtik = 0. This is not quite the case, however, since 
then z1 = 0 and from (2.18) we see that the amplitude reduces to that of the Coulomb 
scattering. Nevertheless, the condition of these 'geometrical resonances' is very close to 
the condition stated above. The geometrical resonances will be discussed further in a 
separate paper (Bergou et a1 1980). 

Introducing a new summation index i ( m  - n)  = r in (3.10), we obtain an equivalent 
but simpler form for t g )  (we avoid the use of ostensibly fractional indices) 

t g )  - - i w  1 6 ~ e '  J,  GZ 1) J,+ GZ ) 
A ? [2Ap + (2r + n)hkI2+ (2ha)*' 

- e  ( 3 . 1 0 ~ )  
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3.3. Cross section 

The cross section can be calculated in the usual manner from the square of the scattering 
amplitude ts. For unpolarised electrons we average over initial and sum over final spin 
states. Since the Hamiltonian (2.2) does not affect the spin state, this procedure actually 
leads to the weighted sum of symmetric and antisymmetric cross sections. Further- 
more, similar to other processes in the presence of an external field, the differential 
cross section d u  is a sum of incoherent contributions du'") corresponding to n -photon 
absorption ( n  < 0) and emission ( n  > 0): 

d a  = 1 da'") 
n 

where, according to equation (3.7), 

da(") = a daF) f a  dff?). 

In our system of normalisation and with the help of equations (3.4) and (3.6) 

and 

Using the explicit expressions (3.4) and (3.6), we obtain finally 

(3.11) 

This expression clearly has the advantage over the ones given by Bos et a1 (1979a) and 
Oleinik (1967a) that the average over polarisation is explicitly carried out and the 
problem is reduced to its essence, i.e. to the manifestation of the internal resonances. In 
addition, tr) is given by two different but equivalent expressions, equations (2.18) and 
(3.10). The first one is more convenient for performing numerical analysis, while the 
second one explicitly exhibits a resonance structure. Far from resonances, the depen- 
dence of the denominator on the summation index can be neglected, and the summation 
can be carried out to yield a closed form expression for the non-resonant scattering 
cross section. 

4. Discussion and summary 

In the previous sections we have derived explicit expressions for the transition ampli- 
tude andscattering cross section of the non-relativistic electron-electron scattering in 
the presence of an external electromagnetic field (laser). This scattering is the non- 
relativistic limit of the Maller scattering in an external field (Oleinik 1967a, b, Bos et a1 
1979a, b). We have found the previously predicted intensity-dependent shifts and 
resonances to persist in the non-relativistic case as well. However, shifts appear in 
higher order in v/c than resonances. In lowest order in v/c there is still an intensity- 
dependent shift of the kinetic energy and momentum of the free electron, but it is 
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uniform (i.e. independent of the state of the electron, which is characterised by E and 
p ) .  This uniform shift therefore cancels out in the transition amplitude which depends 
on differences of energy and momentum. Only the next-order term (which is non- 
uniform, i.e. p dependent) gives a non-vanishing contribution to the shift. But since the 
momentum shift SP is related to the energy shift SE via the relation ISPI= (l/c)lSEI, the 
non-vanishing contribution to the momentum shift is in fact already second order in 
l /c,  and in non-relativistic approximation it can safely be neglected. Thus only the 
energy shift leads to observable consequences. 

The advantage of the consistent non-relativistic treatment is the possibility of 
carrying out explicitly the averaging over spin polarisation. We have obtained two 
different forms for the transition amplitude, namely equations (2.18) and (3.10). 
Equation (3.10) more explicitly shows the resonant structure, and its connection with 
previous calculations is straightforward. On the other hand, equation (2.18) has a few 
advantages. First, it is more suitable for performing numerical calculations. Second, it 
allows an interesting interpretation for the occurrence of resonances. Apart from a 
phase factor, in first Born approximation the scattering can be interpreted as being 
caused by an effective potential V e f l ( r )  = V(r)J , ( z l  sin ikr ) .  It is clear at first sight that 
all effects of the external field result from the non-dipole character of the effective 
potential, since in the k = 0 case the scattering reduces to the Coulomb scattering. For a 
certain electron separation r this effective potential may become attractive (J,, < 0), 
which tends to cause the electrons to form pairs. It is known that to a bound state there 
corresponds a resonance in the scattering amplitude. Therefore the resonances in the 
scattering cross section might be regarded as the manifestation of the attractive effective 
potential between electrons in the presence of an external field. From (3.10) it is clear 
that in the case of a resonance the absorption and emission of virtual photons might be 
regarded as real processes (energy-momentum conservation is satisfied). The effect 
bears some analogy with the formation of electron pairs in superconductors through the 
electron-phonon interaction. However, for a resonance one must simultaneously 
satisfy conservation of energy-momentum in the virtual photon exchange (labelled by 
m in (3.10)) and conservation of the total energy-momentum (as described by the 
argument of the delta functions in (2.17)). 

At this point it should be mentioned that in our treatment we introduced 
phenomenologically a damping factor in the Coulomb potential. Far from resonances, 
the damping can be neglected and we are left with the usual Coulomb potential for the 
electron-electron interaction. In the vicinity of resonances, the role of the radiative 
corrections becomes significant. As was discussed by Bos eta1 (1979a, b), two types of 
radiative corrections have to be taken into account: vacuum polarisation for the photon 
and self-energy correction for the electron. For slow electrons and optical photons the 
second of these is dominant. From their discussion it also follows that the distances 
between resonances are much larger than their width given by the radiative corrections. 
In beam experiments two other types of corrections have also to be taken into account. 
First, the finite width of the laser line; second, the finite width of the momentum 
distribution of the incoming electrons, which leads to further broadening effects. It 
seems to be hard to overcome this latter difficulty in the case of non-relativistic 
electrons. Nevertheless, one can assume an ideal experimental situation and neglect 
the broadening due to these effects. In this case the resonant scattering occurs at very 
small scattering angles (near the Coulomb resonance), and one needs high angular 
resolution, but the effect is in principle observable. We have to mention that in this case 
not only the position but also the width of the resonance is mainly determined by the 
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scattering geometry which again justifies calling them geometrical resonances (Bergou 
eta1 1980). 

We finally note that in homogeneous but time-varying fields (k = 0) the effect 
disappears and the external field has no influence at all on the scattering. Thisis not the 
case, however, in the scattering of oppositely charged particles (e.g. bremsstrahlung). 
In that case the particles oscillate with opposite phases and this oscillatory motion 
enters the relative part of the equation of motion. One then obtains in the k = 0 limit a 
non-vanishing contribution which is the leading term, and k # 0 gives only small 
corrections. Thus the main effect of the external field is to distinguish between the 
relative signs of the scattered particles. 
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Note added in proof. At first sight resonances occur whenever the denominator of (3.10a) vanishes. At these 
points, however, the numerator also vanishes (see the definition of z l  in (2.14a). As a consequence, the true 
location of resonances is slightly shifted from the zero of the denominator and the width and height of the 
resonances remain always finite even without introducing radiative corrections. A closer analysis reveals also 
that resonance conditions can be met in the elastic ( n  = 0) channel only. This point together with further 
details of the cross sections is left, however, to a separate publication (Bergou et al 1980). 
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